

Bridging Interoperability Gaps in Manufacturing with a Bottom-Up Approach to Managing Semantics

Yoav Nahshon Team Materials Informatics, Business Unit Manufacturing Processes

VMAP User Meeting, 19.02.2025

Fraunhofer Institute for Mechanics of Materials IWM

- Focus on traditional research fields in materials science
 - Materials modelling and characterization
 - Assessment of components and manufacturing processes (efficiency, life-time, ...)
- Nowadays, digitalization plays a key role in materials science and manufacturing
- → Current focus: Digitization of materials and process data
 → Generate value by using data-driven tools

Applying data-driven solutions Obstacles

- Interoperability gaps hinder effective communication
- Limited data access restricts solution potential
- Data conversion and pre-processing scripts are required

Engineers lose valuable time

Applying data-driven solutions Obstacles

- Interoperability gaps hinder effective communication
- Limited data access restricts solution potential

Engineers los

Data conversion and prerequired

"Most data scientists spend only 20% of their time on actual data analysis and 80% percent of their time finding, cleaning, and reorganizing huge amounts of data, which is an inefficient data strategy"

APPS and UI

Data Usage

Level

Armand Ruiz, Lead Product Manager IBM Data Science and Watson @ IBM

data

Decision Support

documents

The importance of FAIR data management for SMEs

What is FAIR data and why it is important

- FAIR: Findable, Accessible, Interoperable, Reusable
- Often data is stored in file structures or relational databases within an organization \rightarrow not FAIR

Data-driven solutions with FAIR data Strengths

- Interoperability enables seamless communication
- Full data access fosters deeper insights and better decisions
- Less data conversion streamlines processes and boosts efficiency
- FAIR data is Al-ready

Data-information-knowledge-wisdom (DIKW) hierarchy applied to materials data

Knowledge graphs

Information is linked and stored in a knowledge graph

Every term is unique and defined, e.g.

URI: http://qudt.org/vocab/unit/PERCENT

Description

"Percent" is a unit for 'Dimensionless Ratio' expressed as %.

Human and machine readable

But: Working with semantic technologies is challenging

Semantic complexity scale Ontology Rules, logical formalism Additional Relations to To speak a common language we need ... other concepts Thesaurus (context) Classification of concepts Taxonomy Semantics Syntax: Common Ex:DX56D symbols and concepts spo:hasMaterial Glossary Ex:Test 15 ▶ 260 spo:hasTensileStrength MPa Keywords а po:hasTensileStrength MPa **Controlled Vocabulary** Spo:TensileTest spo:TensileStrength qudt:MegaPA DIN EN ISO 6892-Pmdco: BAM:TensileTest qudt:PA MaterialDesignation Less Expressivity "Pascal"

Data management in materials manufacturing

Tensile test example

IWM

Data management in materials manufacturing

Tensile test example

<pre>"Prüfinstitut" "Fraunhofer IWM" "Projektnummer" "142003" "Projektnummer" "3D-Blechmodelle2" "Datum/Uhrzeit" "16.04.2016 13:53" "Maschinendaten" "ZwickRoell Kappa50DS" "Kraftaufnehmer" "makroXtens" "Vergufnehmer" "makroXtens" "Prüfnorm" "DIN EN ISO 6892-1" "Werkstoff "DSSGO" "Probentyp" "FZ2 (L0=80_b0=20_R20)" "Prüfer" "Wes" "Probenkennung 2" "DX56_D_FZ2_WR00_43" "Messlänge Standardweg" 80 "mm" "Probenbrite" 20.04 "mm" "Probenbrite" 20.04 "mm" "Prüfezeit" 120 "mm" "Prüfezeit" "Standardkraft" "Traversenweg absolut" "Standardweg" "Breitenänderung" "Dehnung" "S" "N" "mm" "mm" "X" 0 81.9691 1158.37 - 6 0 0 0.55 82.0348 1158.37 - 6.98432e-05 1.5002e-06 - 5.02838e-05 0.1 82.0854 1158.37 - 6.98432e-05 1.5002e-06 - 6.98432e-05 0.2 82.0924 1158.37 - 6.98432e-05 1.5002e-06 - 8.73003e-05 0.2 82.0924 1158.37 - 6.98432e-05 1.4004e-06 - 9.91844e-05 0.3 82.1004 1158.37 - 0.000103205 1.49995e-06 - 0.000103205 0.35 82.1004 1158.37 - 9.91844e-05 1.75019e-06 - 9.91844e-05 0.3 82.1014 1158.37 - 9.000103205 1.4995e-06 - 0.000103205 0.35 82.1003 1158.37 - 0.000103205 1.4995e-06 - 0.000103205 0.35 82.1003 1158.37 - 0.000109216 9.000409205 0.35 82.1003 1158.37 - 0.000109216 9.000409205 0.35 82.1003 1158.37 - 0.000109216 9.000409205 0.35 82.1003 1158.37 - 0.000109216 9.000409205 0.35 82.1003 1158.37 - 0.000109216 9.000409205 0.35 82.1003 1158.37 - 0.000109216 9.000409205 0.35 82.1003</pre>	<pre>fileid:TensileTestExperiment a prov:Activity ; prov:generated fileid:AbsoluteCrossheadTravel, fileid:Extension, fileid:Remark, fileid:StandardForce, fileid:TimeStamp, fileid:dataset ; prov:hadPlan fileid:TestStandard ; prov:used fileid:DisplacementTransducer, fileid:ForceMeasuringDevice, fileid:TensileTestSpecimen, fileid:TensileTestingMachine, fileid:TestingFacility ; prov:wasAssociatedWith fileid:Tester ; prov:wasInfluencedBy fileid:ExperimentPreparation . fileid:TestingStandard a prov:Plan . fileid:ExperimentPreparation a prov:Activity ; prov:atLocation fileid:TestingLab ; prov:generated fileid:OriginalGaugeLength, fileid:TestingRate ; } } </pre>
https://github.com/MI-FraunhoferIWM/data2rdf	prov:wasAssociatedWith fileid:DisplacementTransducer, fileid:ForceMeasuringDevice,

Data management in materials manufacturing Tensile test example

A web application for dataspaces

DSMS

Home Knowledge Explorer Tools T

52

About us My profile Admin - Log out

The rapid shift towards information-based and interconnected development and production is (also) of particular importance [...]. This digital transformation is fundamentally changing existing production methods and business models. Its potential must be sustainably addressed and used in a practice-oriented manner.

Source: German Federal Ministry of Education and Research (BMBF)

Seite 14 03 03 2025

Data management in materials manufacturing

Opportunities of using semantic technologies

Integrate all data into one dataspace in a FAIR manner

Enriching data with meaning and link data

Make information from (external) data silos available

Enable information tracking

Seamlessly connect digital tools (interoperability)

Approaches

Different development philosophies :

- Top-down: from generic to specific
- Bottom-up: from the practical to the more general
- Middle-Out: start in the middle and add where necessary

Various tools:

- Protégé / WebProtégé
- Chowlk / RDF Diagram Framework
- Metafactory, Corporate Memory, GraphDB, AllegroGraph, Virtuoso, PoolParty, ...
- Xlsx2owl
- Vocabulary manager

Top-down

Start from broad, high-level concepts and progress to more specific details

Process:

Define the most generic concepts, such as "Entity" or "Object."

Gradually refine these concepts into increasingly detailed subclasses or properties.

Ensure consistency and logical relationships between levels.

Top-down: Trade-off analysis

Development Expressivity

Challenges:

Time-to-application: Takes typically half a year until practical use of the application is being reached

Technoligcal barrier: Requires ontology experts

Development time: No parallel work; long iteration cycles between ontology experts and domain experts

Advantages:

Ensures a well-structured, hierarchical foundation, consistent with a particular framework

Provides a comprehensive, global perspective

Encourages reusability of ontology for various domains

Bottom-up

Begin with specific, detailed concepts or instances and generalize to broader categories

Process:

- Identify real-world data, examples, or use cases
- Organize these instances into classes and relationships
- Generalize and abstract broader categories from the specifics.

Bottom-up: Example

ID	Label	Туре	Description	Comment
SpinneretCapillaries	SpinneretCapillaries		Number of capillaries found in the	
			spinneret, equal to the number of	
			filaments of the yarn obtained	
		http://www.w3.org/2002/07/ow	á	
SpinneretCapillariesDiameter	SpinneretCapillariesDiameter		Diameter of the capillaries found	
		http://www.w3.org/2002/07/owl in the spinneret		
SpinneretCapillariesLengthToDiameterRatio	SpinneretCapillariesLengthToDiameterRatio		Ratio between the lenght and the	L/D
			diameter of the capillaries found	
		http://www.w3.org/2002/07/owl; in the spinneret		
SpinPackMeshSize	SpinPackMeshSize		Pore size of the wire mesh in the	
			filter in micrometers. Indicates	
			the smallest particle that can pass	
		http://www.w3.org/2002/07/owl: through the filter.		
SpinPackSandBedDepth	SpinPackSandBedDepth		Vertical depth of the sand bed in	
			centimeters. Indicates the height	
			of the sand column used in the	
		http://www.w3.org/2002/07/owl filter		
SpinPackSandGrainSize	SpinPackSandGrainSize		Diameter of the individual grains	
		http://www.w3.org/2002/07/ow	of sand	
SpinPackTemperature	SpinPackTemperature		Temperature of the SpinPack	
		http://www.w3.org/2002/07/ow	i i i i i i i i i i i i i i i i i i i	
PumpSpeed	PumpSpeed	http://www.w3.org/2002/07/ow	speed of the pump	2,92cm3/rpm
EvtruderSpeed	EvtrudorSnood		speed at which the extruder	

Bottom-up: Example

Home Knowledge Explorer Tools T

A web application for dataspaces

DSMS

Docs About us My profile Admin ▼ Log out

⁶⁶ The rapid shift towards information-based and interconnected development and production is (also) of particular importance [...]. This digital transformation is fundamentally changing existing production methods and business models. Its potential must be sustainably addressed and used in a practice-oriented manner.

Source: German Federal Ministry of Education and Research (BMBF)

iStock[©]

Bottom-up: Trade-off analysis

Advantages:

Agile development: Application development is reached very fast; updates are done on the fly

Reduces bottlenecks by breaking down complexity into modules \rightarrow The user is independent

Improves transparency in the system as vocabularies as more easily understandable than ontologies

Challenges:

Results in duplications and inconsistencies \rightarrow Requires quality control

Requires effort to align with upper level ontologies

Lacking the necessary tools and modules

Delegates vocabulary managements to users, which need to be guided

Bottom-up approach in practice Upcoming CWA

CEN Workshop: Vocabulary definition for domain ontologies in materials science and manufacturing

- <u>Scope</u>: CWA to outline a guideline and workflow for identifying and defining terminology related to materials science applications, aimed at facilitating the creation of a domain ontology
- <u>Motivation</u>: Address the challenge of inaccessible heterogeneous data by promoting FAIR data management.
- <u>Bottom-up ontology creation</u>: Facilitates practical application and relevant term identification.
- <u>Aim of CWA</u>: Establish guidelines for defining terminology in application ontologies within materials science.
- <u>Overall goal</u>: Enable consistent and effective development of application ontologies to enhance interoperability.

Take-home message

Top-down vs. bottom-up

Top-down:

V Usually long iteration cycles between ontology experts and domain experts

- \rightarrow Often creates bottleneck, can hinder progress and demotivate end uses
- A Ensures a well-structured, hierarchical foundation, consistent with a particular framework

Bottom up:

- \bigtriangledown Introduces duplicates and inconsistencies \rightarrow Requires a review process (automation, via NLP / LLMs)
- A Fast/agile that delegates the tasks to domain experts
 - \rightarrow But experts need guidance (CWA) and tools (vocabulary manager module)

Acknowledgement

Co-funded by the European Union

This project has received funding from the European Union's Horizon Europe research and innovation programme under the Grant Agreement 101091496.

Thank you for your attention!

Yoav Nahshon Team Materials Informatics, Business Unit Manufacturing Processes Fraunhofer IWM yoav.nahshon@iwm.fraunhofer.de