

COMPUTATIONAL MECHANICS FOR PROGRESSIVE VEHICLE BODIES

14 MARCH 2024 | STUTTGART | DLR INSTITUTE FOR VEHICLE CONCEPTS

DISCUSSION RESULTS

QUESTIONS

The VMAP data standard for simulation and measurement Klaus Wolf – Fraunhofer SCAI

• Why/when does a simulation engineer need measurement data?

basis for material cards	real geometry vs. CAD -> effect on FEM	optimization, validation of virtual tests (FE, MKS, CFD,) calibration of material cards
validation of material cards	particle FEM	increased robustness in the design -> forecasting capability
understanding new materials	verification validation calibration	very early depending on requirements

7 | © ASCS e.V. | 2024-03-14 | COMPUTATIONAL MECHANICS FOR PROGRESSIVE VEHICLE BODIES

FROM SIMULATIONS TO MOVEMENT.

QUESTIONS

The VMAP data standard for simulation and measurement Klaus Wolf – Fraunhofer SCAI

How is measurement data currently integrated into the simulation world?

8 | © ASCS e.V. | 2024-03-14 | COMPUTATIONAL MECHANICS FOR PROGRESSIVE VEHICLE BODIES

FROM SIMULATIONS TO MOVEMENT.

QUESTIONS

Automotive Solution Center for Simulation

The VMAP data standard for simulation and measurement Klaus Wolf – Fraunhofer SCAI

• What would be the benefits of having a unique format for both worlds?

reduced susceptibility to errors robust transmission	standardization between measurement and CAE difficult CAE is diverse	standardized libraries for interfaces	Al based structure • label • info	
faster, simpler transfer	 quick replacement simpler percentage structure documentation 	lower unit risk	 direct comparison test -simulation error elimination quick change mapping time saving simulation validation on the fly 	
understanding between designer and simulation engineer increases	test machine parameters -> automatic storage -> fix defined	reproducibility ensured		

9 | © ASCS e.V. | 2024-03-14 | COMPUTATIONAL MECHANICS FOR PROGRESSIVE VEHICLE BODIES